
Introduction

Many amphiphilic molecules in aqueous solution sponta-
neously self-assemble into labile anisotropic aggregates
which exhibit complex liquid-crystalline phase behavior
(e.g. [1]). Over the past decade the theoretical modeling of
the interplay between self-assembly and lyotropic phase
behavior in these systems has been addressed by various
authors (e.g. [2] (review article), [3 – 6]). Common to these
models is that they focus on rod-shaped micelles (some
exceptions are discussed in [2]) and that they are exten-
sions of Onsager’s excluded volume theory for the iso-
tropic-to-nematic transition in dilute systems of slender
rods. The theoretical models usually depend on a number
of a priori unknown parameters such as the monomer shape
and size, the flexibility of the micelle expressed in terms

of its persistence length (for a rod-like micelle), or the
monomer-monomer contact enthalpy within a micelle, etc.
These parameters are either adjusted by fitting the model
results to the experiment or deduced from independent
experimental information. In the present study we want to
use the molecular dynamics technique to obtain these pa-
rameters via computer simulations.

Today’s advanced computer technology allows the
modeling of simplified micelles and a fair number of such
studies can be found in the literature [7 – 11]. Neverthe-
less, atomistic molecular modeling on workstation com-
puters is still limited to a few thousand atoms and to the
nano-second time scale. This usually prohibits the full
simulation of micellar assembly for realistic molecules, and
of course the modeling of the phase behavior of such sys-
tems. An alternative possibility is to model a small portion
of a micelle only using the proper boundary conditions to
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extract local information, which then can serve as input
to, for instance, analytical theories. This is what we do here.
The specific system which we study is 2,3,6,7,10,11-Hexa-
(1,4,7-Trioxaoctyl)-Triphenylene (TP6) in water (cf. Fig-
ure 1). The monomer is a disk-like molecule consisting of
an aromatic core surrounded by hydrophilic side-chains
at its periphery. Above the critical micelle concentration
the monomers stack, the reason for this is one aspect of
this work, and thus reversibly aggregate to form one-di-
mensional or rod-like micelles (see Figure 1). This system
has been studied extensively by Boden and coworkers [12
– 17] (and references therein), which makes it an interest-
ing model system for the above concept for combining
theory and simulation.

In the present work we simulate a section of a one-di-
mensional micelle representing a segment within an iso-
lated, long micelle as well as a complete short micelle both
solvated by molecular water.  We study the side chain-wa-
ter interface and deduce the effective diameter of the mi-
celle.  In our simulation the length of the simulated micel-
lar segment is allowed to fluctuate freely subject to the

external hydrostatic pressure. This allows to determine the
equilibrium monomer-monomer separation along the mi-
celle’s axis, which is important for relating the aggrega-
tion number of a micelle to its length. Using a previously
developed approach [18] we use the conformation statis-
tics of the simulated segments to construct long micelles,
for which we obtain the persistence length for a number of
different temperatures. Furthermore, we study the micelle
size distribution via the free enthalpy gain per monomer-
monomer contact within a micelle using a thermodynamic
integration technique. Finally, we use the results obtained
in this study as input parameters for a previously devel-
oped analytical model to locate the isotropic-to-nematic
transition.

Methodology

In molecular dynamics (MD) simulations the Newtonian
equations of motion
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are integrated numerically for all N atoms of the system

located at positions 
r

ri  and having masses mi. Here we em-

ploy the program package AMBER 4.0 (Assisted Model
Building with Energy Refinement) [19] to compute the
corresponding trajectory. The potential V used in AMBER
4.0 consists of five different contributions, i.e.

Figure 1. The 2,3,6,7,10,11-Hexa-(1,4,7-Trioxaoctyl)-
Triphenylene (TP6) molecule.  Left: The molecular structure
is drawn including the atom types corresponding to the
notation used in the AMBER force field .  Upper right: Van
der Waals representation of the TP6 molecule. The green
atoms are carbons and the red atoms denote oxygens.
Lower right: Sketch of the self-assembly process of TP6
molecules in aqueous solution.  The stacking maximizes
the contact between the cores of the TP6 molecules.
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The first two terms model all bond length bi and va-
lence angle α i  deformations in terms of harmonic
potentials.  Here we use the SHAKE algorithm to constrain
the bond lengths to their equilibrium values b0

(i) [20].  The
third term together with the 1-4 non-bonded interactions
(cf. below) approximates the torsional potential variations
in terms of the torsion angle φi.  The fourth and fifth term
describe non-bonded interactions, i.e. Lennard-Jones and
Coulomb pair-interactions. The summation over atom pairs
includes all atom pairs separated by three (1-4 interactions)
or more bonds in the same molecule or atom pairs, where
each atom belongs to a different molecule. Note that

r r rij i j= −
r r

. The non-bonded interactions are only calcu-

lated within a residue-based cutoff radius Rcut. This means
that if two atoms belonging to two different residues are
closer than Rcut, then all pair-interactions between the two
residues are calculated.  In the following each water and
each TP6 molecule constitute one residue. Note also that
in addition the 1-4 interactions are scaled by a factor of ½

[19]. The Lennard-Jones parameters Aij ij ij= ε σ12  and

Bij ij ij= 2 6ε σ  for the mixed interactions are obtained via

the Lorentz-Berthelot mixing rules σij  = σi + σj (where a

factor of ½ is absorbed into σi and σj) and ε ε εij i j=  [21].

The TP6 molecule is simulated using the united atom rep-
resentation, whereas the water molecules are described via
the SPC/E model [22]. The details of the parameterization
and the numerical values of the parameters are given else-
where [23].

We integrate the equations of motion (1) using the leap-
frog verlet algorithm [21] and we apply periodic bounda-
ries using the minimum image convention to calculate the
non-bonded interactions. During the simulations tempera-
ture and pressure in the simulation box are controlled by

Figure 2. Test of the SPC/E water model. Upper panel:
Simulated water density vs. temperature for different
systems, i.e. two different volumes containing 125
(triangles) and 216 (circles and squares) water molecules
respectively.  For the case of 125 molecules the cutoff radius
is R

cut
=7.5 Å.  whereas for the 216 molecules system we

compare two different cutoff radii, i.e. R
cut

 = 9 Å (squares)
and R

cut 
= 7.5 Å (circles). The experimental values

(diamonds) are taken from [25].  Lower panel: Self-
diffusion coefficients D of the water molecules vs.
temperature for two different box sizes, i.e. 125 molecules
using R

cut 
= 7.5 Å (triangles) and 216 molecules using R

cut

= 9 Å (squares).  The experimental values (diamonds) are
taken from [26].

the weak coupling velocity scaling thermostat and baro-
stat of Berendsen et al. [24].  However, the pressure is com-
puted for each dimension separately, which is necessary
due to the uniaxial anisotropy induced by the presence of
the micelle. Then the atom positions are scaled for each
dimension separately according to the respective pressures.
This anisotropic pressure scaling is necessary because of
two different effects. First, water molecules penetrate into
the side chains of the micelle and the simulation box thus
shrinks. With the pressure scaling perpendicular to the
micellar axis we achieve the proper water bulk density away
from the micelle (as discussed below in the context of Fig-
ure 4). Second, the monomer-monomer separation is a pri-
ori unknown. By applying a constant pressure along the
micelle any stretch or compression of the micelle is al-
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reduction of the cutoff radius leads to a very minor de-
crease in density due to the neglect of attractive interac-
tions.  Figure 2(b) shows the corresponding temperature
dependence of the self-diffusion coefficient, D, in com-
parison to the experiment [26]. For liquid water the self-
diffusion coefficients are in very good agreement with the
experimental data, especially in the temperature range
which is of interest in this work (T=280…300K). Notice,
that we do not observe any indication of freezing in the
simulated temperature range below 273K.  The O-O pair
correlation function, which is not shown here, is very simi-
lar to that obtained in Monte Carlo studies [27]. The posi-
tions of the first three peeks of the experimental curve are
reproduced to within 0.1 Å. Only the height of the first
peak is somewhat exaggerated (roughly by 30 %).

The TP6/water system

For the various simulations in this work which include TP6
the starting configurations are prepared as follows. Stacks
consisting of six and eight TP6 molecules are assembled
by first building and energy-minimizing a single TP6 mol-

Figure 4. The radial density distribution of the water oxygen
atoms ρ (normalized to its experimental bulk value ρ

0
, solid

line) and the radial distribution of the side chain oxygen atoms
∆n/∆r (in arbitrary units, dotted line) at T = 300 K. Note
that r is the radial distance from the micelle’s backbone. The
arrows indicate the radial positions of the oxygen atoms in a
fully extended side chain. From the ρ/ρ

0
 curve we estimate a

radius of the micelle of 14 Å. The respective area of the plot
is shaded.  Inset: Side Chain oxygen-water hydrogen pair
distribution function g(r’) (solid line) and the corresponding
side chain oxygen-water oxygen g(r’) (dotted line).

lowed to relax, and the average monomer-monomer sepa-
ration can fluctuate around its equilibrium value.

Test of the water model

Figure 2 summarizes the results of several 0.5ns constant
pressure test simulations of pure SPC/E water [22] for dif-
ferent box sizes (i.e., 125 and 216 water molecules) at vari-
ous temperatures ranging from 250K to 360K. Figure 2(a)
shows the simulated density as a function of temperature
in comparison to the experiment [25]. The deviation of the
liquid densities from their experimental values is always
less than 2%. For 216 water molecules and at T > 300K the
deviation is even less than 1%. Also, for 216 water mol-
ecules the figure includes the results for two different val-
ues of the cutoff radius, i.e. Rcut = 7.5 Å and Rcut = 9 Å. The
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Figure 3. Snapshot of the simulation box at T = 300 K
containing a stack of eight TP6 molecules in van der Waals
representation surrounded by water molecules in stick
representation. The upper panel shows a view along the
micelle’s axis, whereas the lower panel shows a side view
of the simulation box. Note that due to the application of
periodic boundary conditions we model a segment of eight
monomers within a virtually infinite micelle.
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Figure 5. Upper panel: Center of mass separation d
C
 between

adjacent monomers in the 8-micelle vs. simulation time t.
Lower panel: Corresponding stacking distance d

S
 vs.

simulation time t. The stacking distance is the center of mass
separation projected onto the backbone of the micelle. Circles:
T = 280 K; squares: T = 300 K. All values are obtained by
averaging over all monomer-monomer contact sites within
the micelle as well as over 100 ps timeslices along the
trajectory. The error bars denote the standard error assuming
that the contact sites are independent of each other.

ecule with the program INSIGHT II using the Discover
version 3.2 force field [28]. The TP6 molecule is then rep-
licated employing a 4 Å repeat distance perpendicular to
the triphenylene plane. Subsequently, the stacks are sur-
rounded by water molecules placed on a simple cubic lat-
tice. The box with the 6-mer contains 2500 water molecules
whereas the box with the 8-mer contains 1827 water mol-
ecules. Note that both systems are prepared large enough
to include bulk behavior of the water at large radial sepa-
rations from the micelle.  In the case of the 6-micelle this
is also true along the axial direction. Notice also that we
apply a constant pressure of 1bar to the box. In the case of
the 8-micelle the axial box dimension coincides with eight

times the monomer-monomer separation. The latter, how-
ever, is flexible due to the constant pressure condition. Note
that because of periodic boundary conditions the 8-mer
corresponds to a segment of a virtually infinite micelle. In
a similar fashion a third system is prepared which contains
two isolated TP6 molecules solvated in 2004 water mol-
ecules.

The results reported below are for MD simulations at
three different temperatures (T = 280, 290 and 300 K). Af-
ter a short 10 ps MD run using a 1fs time step the remain-
der of each simulation is carried out with a 4fs time step.
The total length of each run is between 0.6 and 1.5ns dur-
ing which the atom positions are stored every 0.2 ps. As an
example, Figure 3 shows an instantaneous configuration
during the simulation of the 8-mer. The eight monomers in

Figure 6. Orientation correlation function 
r r

u un i n⋅ + i 
vs.

distance n. The 
r

ui  and 
r

ui n+  are tangent vectors along the

micelle’s contour at monomers i and i+n. The average is taken
over i. The smooth straight line is an exponential fit to the
simulation result for T = 300 K.  Upper right insert: Definition
of a tangent vector along the micelle’s contour. Lower left
insert: x,y-Projection of the contour of one large micelle.
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the box form a stack with the core regions in contact. No-
tice that the water molecules penetrate into the side chains
but do not enter the core region.

The side chain-water interface

In Figure 4 the radial density distributions of the water oxy-
gen atoms and the radial distribution of the side chain oxy-
gen atoms are shown.   Note that the water oxygen density
is normalized to its experimental bulk value. The results
plotted in Figure 4 are taken from the trajectory at
T = 300 K. The radial distributions extracted from the other
two trajectories do not show significant deviations from
the curves shown in Figure 4.  The radial distribution func-
tion of the water molecules shows two peaks at a distance
of r = 6 Å and r = 9.5 Å.  In this range the average density
is approximately half that of the bulk value, which is ap-
proached in the range 11 Å < r < 14 Å.  From this we esti-
mate a micelle diameter of about 28 Å.  Notice that an ap-
preciable onset of the water distribution occurs at r = 4 Å,
i.e.  these water molecules are right at the periphery of the
triphenylene core. However, the water molecules do not
penetrate into the core region between the monomers.

The corresponding radial distribution of the side chain
oxygen atoms shows three peaks which can be identified
with the three oxygen atoms in each side chain. The first
peak is sharp, whereas the broadness and the inward shift
of the two outer peaks reflects the conformational free-
dom of the side chains.  Notice that the arrows in Figure 4
denote the radial oxygen positions in a fully extended side
chain.

Comparing the two radial distributions it can be seen
that the radial density of the water oxygens shows local
minima at the preferred positions of the side chain oxygen
distribution peaks. The oxygen atoms in the water mol-
ecule as well as in the side chains carry negative partial
charges. Therefore, a repulsive Coulomb force acts between
these atoms. This force explains the minima mentioned
above. Nevertheless, there appear to exist hydrogen bonds
between the neighboring water molecules and the side
chain oxygen atoms. This can be seen from the pronounced
first peak at ≈ 1.9 Å in the side chain oxygen – water hy-
drogen pair distribution function shown in the inset of Fig-
ure 4.

Monomer-monomer stacking distance

The monomer-monomer distance in the micellar aggregates
is important in converting aggregation numbers into the
actual lengths of the micelles. These lengths play an im-
portant role in the analytical description of the phase
behavior of TP6 in aqueous solution.  Here we study two
differently defined monomer-monomer separations. In the
first case we determine the separation of the centers of mass
dC of adjacent triphenylene cores.  In the second case we
compute the projection of the previously determined sepa-
ration dC onto the backbone in order to obtain the stacking
distance dS along the backbone. In this study we define
the backbone of the micelle as the principal axis of inertia
corresponding to the direction along the micelle.

Figure 5 shows dC and dS averaged over the monomer-
monomer contacts within the periodic 8-micelle as a func-
tion of simulation time t for two temperatures, i.e. T = 280 K
and T = 300 K, which bracket the temperature range inves-
tigated here.  The average over all contacts for the separa-
tions dC and dS are given in Table 1. On average dC ex-
ceeds dS by 0.2 to 0.3 Å. However, we do not see any change
of the mean distances with temperature exceeding the er-
ror margin. Thus, the magnitude of the error, where we as-
sume that different contacts are statistically independent,
is certainly an upper limit for the temperature dependence
of dC and dS.  It is worth noting that the averages for dC and
dS in Table 1 are rather close to the experimentally deter-
mined ring-ring separation of between ≈ 4.2 Å at T = 280
K and 5 Å at T = 300 K [17].

Figure 7. Average persistence length, P, for the constructed
long micelles vs. temperature T for three different
temperatures.
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Table 1. Mean values for the center of mass separation d
C

and the stacking distance d
S
 between two adjacent

monomers for the three different temperatures.

T [K] < dC> [Å] <dS> [Å]

280 4.5 ± 0.14 4.2 ± 0.12
290 4.5 ± 0.19 4.3 ± 0.20
300 4.4 ± 0.10 4.2 ± 0.13
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Note that we compare the results obtained for the infi-
nite micelle with those for the micelle consisting of six
monomers only.  Within the fluctuations we do not observe
any difference neither in dC nor in dS between the short
and the infinite micelle.

Micellar flexibility

To obtain the flexibility of the rod-like micelle we esti-
mate its persistence length, P. P is defined by the correla-
tion between the tangent vectors along the micelle (see up-
per inset of Figure 6). For not too small separations the

correlation for two tangent vectors 
r

ui and 
r

ui n+  separated

by n monomers is given by [29]

r r

u u ei i n i
n P⋅ =+

− (3)

In order to compute the persistence length via this equa-
tion a large micelle is required to compute the average in
(3).  Here we use an adaptation of a method, which we have
developed previously to compute P for a helical polypep-
tide (Poly-γ-benzyl-L-glutamate) [18]. The method is a
build-up procedure by which a long micelle is constructed
by chaining together instantaneous conformations taken
from a simulation of a short segment, i.e. the 8-micelle in
the present case.

The persistence length is then calculated using equa-
tion (3) by averaging the dot products of the tangent vec-

tors 
r

ui  and 
r

ui n+  along the micelle. The direction of each

tangent vector is defined as the moment of inertia axis
along a cylindrical segment of the micelle consisting of
five monomers centered at the origin of the tangent vector
(cf. inset in the upper right of Figure 6).  As a measure of
the uncertainty of the persistence length to be computed
we calculate the standard deviation of P based on ten dif-
ferent long micelles each constructed as described by
choosing at random ten different initial segments.  Figure

6 shows an exponential fit to 
r r

u un i n i
⋅ +  for one of the ten

micelles at T = 300 K.  The lower left inset of Figure 6
shows an example micelle in terms of its contour’s x,y-pro-
jection.

In Figure 7 the mean value of the persistence length is
shown for three different temperatures.  It can be seen that
the persistence length decreases with increasing tempera-
ture. Thus, the micelles become more flexible with rising
temperature.  The error bars denote the standard error as
explained above.

Thermodynamics of micellar assembly

To good approximation the chemical potential µn of a one-
dimensional n-micelle in dilute solution can be written as

( ) ( )µ µ γ αn n n nn RT X RT RT n= + + − −~ ln ln0 1 1 (4)

An extensive discussion of this equation can be found in
the article by A. Ben-Shaul and W.M. Gelbart in reference
[1]. In the first term ~µn

0  is a standard average chemical
potential per monomer in an n-micelle, excluding the in-
teraction between the monomers, which is treated sepa-
rately. The second term is the contribution due to the sol-
ute mixing entropy. Note that here Xn refers to the mole
fraction of monomers within micelles of aggregation
number n. In particular n = 1 corresponds to the free
monomers. The third term describes the interaction between
the solute particles. However, here we are merely inter-
ested in the limit of no interaction, where the activity co-
efficient g = 1 so that this term vanishes (At high concen-
trations, however, excluded volume effects as well as
entropic repulsion between the persistent-flexible micelles
due to their confinement must be included). The last term
constitutes a simple one-parameter model of monomer-
monomer interaction within a one-dimensional n-micelle,
where n-1 is the number of contacts between monomers.
The quantity –a is the molar free enthalpy per monomer-
monomer contact and RT, i.e.

α = −
∆G

RT
contact (5)

which in general depends on the type of solvent, tempera-
ture, pressure etc. and usually also on n, because monomers
near the end of a micelle feel a different environment com-
pared to those in the bulk of the micelle. Here, however,
we will be exclusively dealing with the bulk value of α,
which is independent of n. Using equation (4) in conjunc-
tion with the equilibrium condition µn = nµ1 yields the mi-
cellar size distribution

( ) ( )
X nX en

n n n RTn=
− + −

1
1 1

0 0α µ µ~ ~
(6)

under the given conditions. In the following we will be
concerned with the calculation of α or rather ∆Gcontact,
which, as equation (6) shows, is an important ingredient
for the calculation of the micellar size distribution. Also,
the analysis of the experimental data in reference [17] in-
dicates that for the present system the approximation

~ ~µ µ1
0 0= n  seems to be justified, and that the size distribu-

tion is mainly determined by α alone.
In the following we apply the simulated thermodynamic

integration approach (cf. e.g. [30]), which allows to evalu-
ate ∆Gcontact via the relation
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∆G dcontact n
Hc

eq

= −
∞
∫1

1
∂
∂λ λ

λ

λ (7)

Here HC(λ) is the Hamiltonian of the system with a fixed
monomer-monomer separation λ. <…>λ denotes an ensem-
ble average at the same fixed λ.  The numerical integration
of the right hand sight of equation (7) requires a series of
MD simulations to evaluate the ensemble average at sev-
eral distinct values of λ. However, the method is
computationally too expensive for the complete system
containing the micelle and the solvent. Therefore we cal-
culate ∆Gcontact along the alternative route (double lined
arrows) in the following thermodynamic cycle

−∆Gmon
hyd

( )n Gcontact
vac−1 ∆

∆Gn mic
hyd

−

n-micelle
in solution with
λ = ∞

n-micelle
in vacuum with
λ = ∞

n-micelle
in vacuum with
λ = λeq

n-micelle
in solution with
λ  = λeq

(n - 1)∆Gcontact

(8)

i.e.

( )
( )

n G

n G n G G

contact

mon
hyd

contact
vac

n mic
hyd

− =

− + − + −

1

1

∆

∆ ∆ ∆ (9)

Here ∆Gmon
hyd  and ∆Gn mic

hyd
−  are the free enthalpies of

hydration of the monomer and the n-micelle, respectively,

whereas ∆Gcontact
vac  is ∆Gcontact in vacuum.  Note that

∆Gcontact
vac  requires substantially less computational effort,

because without solvent the number of interactions is
greatly reduced.

To obtain the hydration free enthalpies of the micelle

∆Gn mic
hyd
−  from our trajectories we use the hydration shell

model developed by Scheraga and co-workers [31, 32]. It
is based on the assumption that ∆Ghyd can be split up in
contributions proportional to the average water accessi-
ble volume < V(i)k > of the individual atoms or groups.
Making the simplifying assumption that the weighting of

the sidechain conformations in solution is the same as in
vacuum it can be written

( )∆ ∆G g Vhyd
k
hyd

i k
k

≈ ∑ (10)

∆gk
hyd  is the hydration free enthalpy density of the kth

atom or group. Note that these densities are independent
of the molecule’s conformation. The < V(i)k > can be ob-
tained directly from our simulation trajectory by Monte
Carlo integration. The hydration free enthalpies of the
monomer ∆Gmon

hyd  are obtained in a similar fashion except
that the trajectories are taken from three additional
simulations of two isolated TP6 molecules in water.

Note that the righthand side of equation (7) is the re-
versible work necessary to separate a monomer from the
micelle. Here we evaluate the righthand side of (7) in
vacuum by calculating

∆G f dcontact
vac

ax
vaceq

=
∞∫
λ

λ
λ (11)

where fax
vac

λ
 is the time averaged force along the axis

of the micelle in vacuum acting on a monomer, which is
pulled off the end of the micelle. The micelle is approxi-
mated by a trimer for which we perform molecular dynam-
ics simulations (as discussed above) constraining the po-
sitions of the carbon atoms of the central hexagon in each
monomer so that these hexagons in neighboring monomers

Figure 8. Time averaged contact force fax
vac

λ
 as a function

of λ for three different temperatures T = 280 K (squares),
290 K (diamonds), and 300 K (circles). For comparison, the
result of a similar calculation for T = 300 K only with a
different charge model (AM1 charges) is also shown (crosses).
All points are averages over MD trajectories of 0.5 ns.

-15

-10

-5

0

5

10

15

4 6 8 10 12 14 16

 l    [Å]

<
 f

ax
v
ac

>
 [

k
ca

l/
m

o
l/

Å
]



338 J. Mol. Model. 1996, 2

∆∆∆∆∆G [kcal/mol] T = 280 K T = 290 K T = 300 K

∆Gmon
hyd -47.8 -47.6 -48.4

1
n n mic

hydG∆ − -29.3 -29.4 -29.8

∆Gcontact
vac -43 -38 -35

∆Gcontact -24.5 -19.8 -16.4

α 43.9 34.3 27.4

Table 2. Free enthalpies calculated along the alternate path
in (9), and ∆G

contact
 and α calculated according to (9) and (5)

respectively in the limit for large n.

are eclipsed and parallel. All other atoms of the
triphenylene core and in particular the side chains remain
unconstrained. Initially, we set the distance of the
triphenylene to the equilibrium separations discussed
above. Subsequently, the monomer is pulled away along

the axis of the micelle, and fax
vac

λ
 is calculated as a func-

tion of λ.
Table 2 lists the hydration contribution to ∆Gcontact ac-

cording to equation (10). Thus in the indicated tempera-

ture range the hydration contribution to ∆Gcontact, −∆Gmon
hyd

+ 1
n n mic

hydG∆ − , is close to 18.5kcal/mol which means that

the hydration disfavors micelle formation.  Table 2 also

contains the values of ∆Gcontact
vac  calculated according to

(11) – the corresponding fax
vac

λ
 vs. λ curves are shown

in Figure 8.  The values for ∆Gcontact
vac  obtained in this fash-

ion range from –43 kcal/mol for T = 280 K to –35 kcal/mol

for T = 300 K.  Note that the decrease in ∆Gcontact
vac  with

decreasing temperature is physically reasonable, because
the entropic repulsion (due to spatial confinement) be-
tween the sidechains should become less as temperature
decreases.   The resulting values for ∆Gcontact yield an α
(cf. Table 2) which is between 43.9 for T = 280 K and 27.4
for T = 300 K, and thus our α is about two to three times
larger than the experimental value quoted above.

One source of error in the present calculation is the ne-
glect of the polarization contribution to ∆Ghyd in equation
(10). The parameterization is strongly model dependent
and unfortunately cannot be carried over to the model used

in this work. We also probe the sensitivity of fax
vac

λ
 to

the charge model, because the partial charges are a possi-

0.2

0.3

0.4

0.5

275 280 285 290 295 300 305

v

T [K]

Figure 9. The isotropic-to-nematic phase coexistence region
in terms of temperature T and solute volume fraction υ
obtained in this study (triangles) and experimentally
(squares).

ble source of considerable error in every force field calcu-
lation.  Figure 8 shows the integrand on the righthand side
of (11) for T = 280, 290, 300 K. All three curves show a
similar behavior with a positive (repulsive) maximum at λ

≈ 7 Å. We  test the sensitivity of fax
vac

λ
 on the partial

charges by comparing the result for the partial charges of
the Q-equilibration algorithm, which we use here, to the
result for AM1 charges (which on average are 2.6 ×

smaller). Overall we find little difference in the fax
vac

λ
vs. λ curves, and thus the corresponding areas under the
curves are close, and we would estimate the error at about

10%. Thus, if the error for ∆Gmon
hyd , 1

n n mic
hydG∆ −  and

∆Gcontact
vac  in Table 2 is 10%, then the resulting error for α

is already about 25%, becaused ∆Gcontact
vac  essentially is cal-

culated as the difference between significantly larger num-
bers.

Isotropic-to-nematic phase transition

In [33] a theoretical model for the phase behavior includ-
ing the isotropic-to-nematic phase transition for a system
of reversibly assembling long, rod-like, flexible,
monodisperse, linear aggregates is given. The phase
behavior is driven by a subtle interplay between aggre-
gate flexibility, the inter-aggregate steric interactions, and
the internal energy of the aggregates.  The orientation free
energy in the model depends on the angular distribution
of the aggregate’s contours and on their length. The flex-
ibility of the aggregates therein is characterized by their
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persistence length. For the contribution due to the excluded
volume an extension of Parson’s decoupling approxima-
tion (cf. [34]) is used. This expression simplifies to
Onsager’s trial function description [35] of long, rigid rods
for small volume fractions of the solute.  Finally, the inter-
nal free energy of the aggregate is described via a
monomer-monomer contact free energy analogous to the
last term in equation (4).

Figure 9 shows a preliminary calculation, where we
have converted the theoretical isotropic-nematic phase
diagram of Figure 3 in reference [33] from the P-υ-plane
to the T-υ-plane, using the simulation result of Figure 7.
Here υ is the solute (TP6) volume fraction. The compari-
son with the experimental transition [16] is rather satis-
factory at the low temperatures, but for higher tempera-
tures the deviation is considerable. We mainly attribute this
to the independence of α on temperature and concentra-
tion assumed in [33], and, in addition, to the neglect of
polydispersity in the analytical model.

Conclusion

In this paper we have studied the structure and thermody-
namics of a rod-like micelle using molecular dynamics
simulations.  From the radial water density profile and the
radial positions of the side chain atoms we estimate the
effective diameter of the TP6 micelle in water to be 28 Å.
For the average monomer-monomer center of mass and
stacking distance within the micelle we obtain 4.5 Å and
4.2 Å respectively for all three temperatures considered
here. These average values are in good agreement with the
experimentally determined ring-ring separations.  Long
TP6 micelles are flexible, and we obtain persistence lengths
between ≈ 340 monomers at 280 K and ≈ 160 monomers at
300 K.  It is worth mentioning that the temperature depend-
ence of the phase behavior of micellar systems like the
one studied here enters mainly through two quantities -
the persistence length and the contact free enthalpy. Here
we have shown that the temperature dependence of the first
is rather strong in the case of TP6 in water, i.e. P is reduced
by a factor of ≈ 2 between T = 280 K and 300 K.  Thus, the
decrease of the persistence length with increasing tempera-
ture is substantial.  As mentioned before, the effective mi-
celle diameter as well as the persistence length are key
quantities in the theoretical description of the phase
behavior of the TP6/H2O-system, i.e. excluded volume in-
teractions are dependent on the micelle’s geometry (as-
pect ratio), whereas the orientation distribution of the mi-
celle’s contour and the attendant entropy contribution de-
pend on the persistence length and on the micelle’s con-
tour length which in turn depends on the monomer-
monomer separation. The present simulation shows how,
even for a large system (in terms of the monomer size),
these quantities can be calculated including microscopic
detail. Furthermore, we have considered the monomer-

monomer contact free enthalpy which largely governs the
micellar size distribution at low concentration. We base
this calculation on a combination of our simulation trajec-
tories with a hydration shell model due to Scheraga and
co-workers. Even though our simulation results of α = 27.4
43.9 overestimate the experimental findings they allow to
compare the various contributions to the monomer-
monomer contact free enthalpy.  We find that the main con-
tribution to α is due to the competition between the
monomer contact potential energy (which favors
micellation) and the loss of free enthalpy of hydration when
a monomer-monomer contact is formed (which disfavors
micellation). Finally, we used our simulation results as an
input for an previously developed theoretical model for
the phase behavior of reversibly assembling, rod-like, flex-
ible aggregates. In this preliminary calculation we have
found quantitative agreement for T = 280 K and qualita-
tive agreement for the two higher temperatures.
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